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We consider a system consisting of a planar random walk on a square lattice,
subjected to stochastic elementary local deformations. Both numerical and
theoretical results are reported. Depending on the deformation transition rates,
and specifically on a parameter g which breaks the symmetry between the left
and right orientation, the winding distribution of the walk is modified, and the
system can be in three different phases: folded, stretched and glassy. An explicit
mapping is found, leading to consider the system as a coupling of two exclusion
processes: particles of the first one move in a landscape defined by particles of
the second one, and vice-versa. This can be viewed as an inhomogeneous exclu-
sion process. For all closed or periodic initial sample paths, a convenient scaling
permits to show a convergence in law (or almost surely on a modified probabil-
ity space) to a continuous curve, the equation of which is given by a system of
two non linear stochastic differential equations. The deterministic part of this
system is explicitly analyzed via elliptic functions. In a similar way, by using a
formal fluid limit approach, the dynamics of the system is shown to be equiva-
lent to a system of two coupled Burgers equations.

KEY WORDS: Random walks; winding; exclusion process; phase transition;
Burgers equation.

1. INTRODUCTION

Random walks are fundamental objects arising in probability. Also they
are of primary importance in various fields of physics, especially with
regard to polymers (11, 8) and biology. For instance, planar random walks
can be used as a representation of DNA coding, since the sequence of the



four different kinds of codons (A,G) for purines and (T,C) for pyrimidines
can be considered as a random walk on a square lattice: as a rule, (G,C)
code the upward and downward jumps, whereas (A,T) code the left and
right steps. (1, 4) It seems therefore interesting to consider random geometri-
cal objects as complex systems, and to submit them to some dynamical
principles, the goal being to develop methods and tools which hopefully
might be used to tackle more realistic models.

In this context we will analyze the evolution of an arbitrary sample
path CN of length N, generated by a simple random walk in the square
lattice Z2, and subject to local transformations. This stochastic object has a
rich structure, plays an important role in probability theory and lends itself
to sufficiently wide but non trivial results.

At time t=0, CN is given, and we assume it has been uniformly gen-
erated. This means precisely that each successive jump (up, down, left, and
right) building CN is selected with the same probability 1/4. Eventually CN

can be constrained to be closed or to have fixed extremities. Once the initial
configuration is defined, the system evolves according to the four local
pattern transformations depicted in Fig. 1. Only a single point of the walk
can be moved at a time, with the constraint that no link be broken (i.e., the
walk remains always connected).

Geometrically, these patterns can be expressed as

˛ left bend M1, right bend M3,
vertical or horizontal fold M2,
straight ( Q Q ) M4,

Fig. 1. Pattern transition rates.
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and the following local distortions can occur:

˛M1 Q M3, with rate l+,
M3 Q M1, with rate l−,
rotation of M2 of angle ± p

2 , with rate c ±.

Hence we have defined a global Markovian continuous time evolution of
the system, with exponentially distributed jump times, the state space of the
underlying Markov chain being the set of 4N sample paths (or curves) CN

introduced above.
This model is somehow a kind of discrete analogue of the Rouse

chain, (20) which is a popular model for polymer dynamics. There, each
point of the chain is harmonically bound to its nearest neighbor, and move
randomly in space. Some interesting statements can be made concerning
the winding properties of such chains in 2d. (2) In this respect, from a pro-
babilistic point of view, we keep in mind that winding variables are for
Brownian curves, and they give rise to striking limit laws under convenient
scalings (see, e.g., refs. 21, 18, and 19).

The paper is organized as follows. Section 2 presents the basic numer-
ical and qualitative results, which rely on ad hoc discrete event simulation
experiments together with a convenient graphical interface. In Section 3, we
propose a mapping of this model onto another one, which consists of two
coupled exclusion processes. The main quantitative results are given in
Section 4: scaling parameter, phase transition and critical value, fluctuation
analysis via theorems of central limit type.

2. NUMERICAL EXPERIMENTS

2.1. Observations

We shall begin our study with several basic numerical observations.
The model is purely stochastic and hence well-suited for Monte-Carlo
simulations. These have been performed with the help of a graphical inter-
face, which facilitates the exploration of the relevant parameter range,
together with the display of the main regimes and phases of the system.

Several parameters have to be tuned: the number of steps N; the rela-
tive position of the extremities of the walk (Dx, Dy); the boundary condi-
tions, which either can be defined to let the end points move independently,
or can be fixed or tied up by some periodic boundary conditions; finally,
the time constants associated with the elementary transformations, y1 with
c, y2 and y3 with l+ and l−. Any walk fulfilling these conditions is ran-
domly generated at time t=0 and then evolves stochastically, with a
movement depending on the rates and boundary conditions given above.
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After each new event, time is incremented by an amount inversely propor-
tional to the number of all possible moves weighted by their respective rates.

Interesting things happen when we break the chiral symmetry by
imposing a detuning between l+ and l−, in a proportion of order

g=N
l+− l−

l++l− . (2.1)

For closed walks, four different situations can roughly be observed (see
Fig. 2).

Fig. 2. Picture of a random walk of N=5000 steps, showing the phases of the system for
several values of g. Each dark line segment represents 1000 steps. (a) g=0 (the basic scale).
(b) g=5 (scale=1). (c) g=12.5 (scale =1/6). (d) g=250 (scale =1/2).
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(a) g M 1. The initial configuration belongs to the equilibrium set of
typical configurations, only fluctuations are altered by the finite value of g.

(b) 1 M g M 6. The system reaches an equilibrium which still corre-
sponds to a random walk, the fractal dimension remaining equal to two,
but a macroscopic circular drift is observed, yielding a sort of smoking
ring.

(c) 6 M g M 50. The smoking ring gets stretched, and the elementary
links becomes aligned over long distance. Fractal dimension shrinks to one,
with the apparition of a long range order. Rotational invariance is broken.

(d) g N 50. The system is not able to reach its equilibrium. This
typical configuration (out of equilibrium) exhibits an intricate hierarchical
structure of bubbles. Smaller bubbles get evaporated into bigger bubbles.
Time constants associated to these mechanisms grow exponentially with the
size of the bubbles. Therefore, the final configuration corresponding to one
bubble is never reached in the thermodynamic limit. We will refer to this
non-equilibrium phase as a glassy phase.

2.2. Brownian Windings

Some macroscopic random variables of interest can be constructed in
order to be able to follow numerically the evolution of the system. First of
all the total number of patterns M1, M2, M3, M4 is a set a variables which
can be used to distinguish between a folded and a stretched phase of the
system. All these number are expected to be fairly distributed in the folded
phase although in the stretched phase we expect the pattern M4 to be in
majority. In order to express mathematically the curling of the system, we
consider variables related to the winding properties of planar Brownian
curves, which are defined as follows: with each point in the plane is asso-
ciated its winding angle h, scanned by the random walker around this point.
A limit law for this variable has been derived by Spitzer for Brownian
curves. Actually, assuming the length of the curve is set to 2a=Na2 when
N Q . and a Q 0 in the Brownian limit, the winding angle h(a) of an arbi-
trary point has the asymptotic probability (21)

lim
a Q .

P 1h(a)=
a log a

2
2=

1
p

1
1+a2 .

For a closed walk, the value taken by h are limited to 2np, where
n ¥ Z represents the winding number associated with the point under
consideration.
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Fig. 3. Winding sectors defined for a closed random walk (a). Intensity gradient represent-
ing sectors for a walk of N=106 steps: in dark gray and black, respectively, positive and
negative winding sectors; in light gray, the null sector (b).

For each n, the set of points with the same winding number n form
a winding sector, whose arithmetic area is a random variable denoted by
Sn(a).

Under the above mentioned Brownian limit for closed curves of length a,
we have (6)

E[Sn(a)]=
a

2pn2 .

In a similar way, the total algebraic area enclosed by the Brownian curve is
defined as

A(a)= C
n ¥ Z

nSn(a),

and its distribution is given by Lévy’s law (18)

lim
a Q .

P(A(a)=2sa)=
p

2 cosh2(ps)
.

The variable Sn(a) is indeed enough for a complete characterization of the
phases of the system.

2.3. Slow Dynamics

The study of winding sectors and of associated variables is especially
well adapted to describe the evolution of the system, since the presence of
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curls has a direct impact on the Sn distribution. A small but finite value of
g M 1 will show itself by the existence of a shift in the distribution of Sn

together with an unbalancing between positive and negative winding
sectors. When 1 M g M 6, the distribution of Sn condenses into either S1 or
S−1. However, the behavior of S1 or S−1 with regard to scaling factor does
not change, and these variables still scale like N. The system reaches its
stationary state after a transient regime characterized by a single time con-
stant (Fig. 4a). For 6 M g M 50 the system get stretched, an unfolding tran-
sition occurs. S1 or S−1 scale now like N2, and the fact that the walk is tight
get reflected in the distribution of the motifs M1, M2, M3, M4. When
g N 50 we obtained a glassy phase. This is related to the apparition of a
hierarchy distribution of meta-stable configurations. The system evolves
slowly to the rate of bubbles evaporations, small bubbles collapses and
produce bubbles of bigger size. As a consequence, the transitory regime is
completely different. For small size systems (see Fig. 4b), it is observed that

Fig. 4. Evolution of the total algebraic area (a, b, c). First transition with condensation in
the first winding sector (a) N=1000 steps. Unfolding transition with metastable states for
N=2000 steps (b). Curves (c) and (d), drawn in a logarithmic scale for N=106, represent
respectively the slow dynamics and the distribution of the Sn’s.

Dynamical Windings of Random Walks and Exclusion Models. Part I 235



the total algebraic area increases by successive steps. These steps corre-
spond to intermediate metastable states, consisting of bubbles of increasing
size. The associated time constants behave roughly exponentially with the
size of these bubbles. When N Q . (see Fig. 4c), a continuous spectrum of
time constants is obtained and the convolution of these dynamical effect
corresponding to different scale end up in a slow dynamical grows. The
total algebraic area increases logarithmically with time. We observe also
(see Fig. 4d) that the distribution of Sn seems to have a limit characterized
by the absence of negative (or positive) sectors, i.e., strictly zero for nega-
tive (or positive) index n, together with a scaling exponent around 1.
Indeed this sequence of distributions seems to behave like n−1, instead of
n−2 for g=0. Also the glassy transition is clearly of first order, with
coexistence of a liquid phase (part of the walk which remains folded and
disordered) and a solid glassy phase. The parameters corresponding to
temperature and magnetization can be defined by analogy with standard
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Fig. 5. The limit arithmetic area of the first winding sector when g varies, rescaled by N (a)
and by N2 (b). The dashed line in (b) is computed from part 4.2 giving the critical value
gc=2p separating the folded phases from stretched one. Scaling with N of time-constants for
the transient regime (c) for g=10; the fit gives a value 2.01 for the exponent.
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spin glasses. They can be tuned independently, as we shall see later on, by
letting vary g (which is roughly equivalent to the external magnetic field)
and c (pertaining in some sense to the temperature).

3. MAPPING ONTO COUPLED EXCLUSION PROCESSES

3.1. Sequence Coding

The entire walk can be encoded in a sequence (ai) of four integers
(0, 1, 2, 3), corresponding to the orientation of the each link i ¥ {1...N} in
units of p

4 , connecting two successive points.
The local deformations are expressed as local exchanges or reactions

between neighbouring sites. The set of reactions is described as follows:

01 ]

l
−

l
+

10, 12 ]

l
−

l
+

21, 23 ]

l
−

l
+

32, 30 ]

l
−

l
+

03,

02 ]

c
−

c
+

13, 13 ]

c
−

c
+

20, 20 ]

c
−

c
+

31, 31 ]

c
−

c
+

02.

When looking carefully at the transitions, as skeched in Fig. 6, we
observe that two independant processes are at work. Indeed, mutations
operate either vertically or horizontally, and with opposite directions
between both modified links. This suggests to recode each link j,
j=1,..., N by means of two binary components sa

j ¥ {0, 1} and sb
j ¥ {0, 1},

where sa
j represents the column index and sb

j the line index. Thus is estab-
lished a bijection aj Q (sa

j , sb
j ) such that

˛0 Q (0, 0),
1 Q (1, 0),
2 Q (1, 1),
3 Q (0, 1).

In this scheme a transition on an arbitrary link does concern only either of
its components. Indeed the infinitesimal generator is the sum of two terms:
the first one acts on the sequence {sa

i }, with rates conditioned by the
sequence {sb

i } and vice-versa. We have thus a Markov process with state
space

(Sa, Sb)=((sa
1 , sb

1),..., (sa
N, sb

N)),
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Fig. 6. Horizontal and vertical exchanges corresponding to transitions when link i has the
value 0, according to the 4-adic coding. Rules for other transitions follow by rotational sym-
metry.

which is thus a 2N-dimensional boolean vector. Then, for an arbitrary
function f: (Sa, Sb) Q C, the generator decomposes into

G= C
N

i=1
ha(i)+hb(i), (3.1)

where the operators ha, hb acting on f are defined by

ha(i) f(Sa, Sb)

=def
l+

a (i) sa
i s̄ a

i+1[f((sa
1 , sb

1),..., (0, sb
i ), (1, sb

i+1),..., (sa
N, sb

N)) − f(Sa, Sb)]

+l−
a (i)s̄ a

i sa
i+1[f((sa

1 , sb
1),..., (1, sb

i ), (0, sb
i+1),..., (sa

N, sb
N)) − f(Sa, Sb)],

hb(i) f(Sa, Sb)

=def
l+

b (i) sb
i s̄ b

i+1[f((sa
1 , sb

1),..., (sa
i , 0), (sa

i+1, 1),..., (sa
N, sb

N)) − f(Sa, Sb)]

+l−
a (i)s̄ b

i sb
i+1[f((sa

1 , sb
1),..., (sa

i , 1), (sa
i+1, 0),..., (sa

N, sb
N)) − f(Sa, Sb)],
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using the boolean notation s̄=1 − s. Transition rates can be computed by
inspecting the different cases, which yields the following expressions.

˛l ±
a (i)=s̄ b

i s̄ b
i+1l + +sb

i sb
i+1l ±+s̄ b

i sb
i+1c + +sb

i s̄ b
i+1c ±,

l ±
b (i)=s̄ a

i s̄ a
i+1l ±+sa

i sa
i+1l + +s̄ a

i sa
i+1c ±+sa

i s̄ a
i+1c + .

(3.2)

The generator (3.1) represents two coupled systems of particles moving
on a one-dimensional lattice with exclusion (i.e. there is at most one par-
ticle of each species per site (17)).

These particles perform random elementary jumps to the left or to the
right. Obviously, both systems are interlaced: the jump rates l ±

a (i) of
species (a) at site i are conditioned by the states of particles of species b at
sites i, i+1, and conversely according to relations (3.2). Here we introduce
a notation which will be meaningful in the sequel,

l=def l++l−

2
and m=def l+− l−

2
,

c=def c++c−

2
and d=def c+− c−

2
, (3.3)

In the particular case c ±=l ±, we get

˛l ±
a (i)=l ± (2sb

i − 1) m,
l ±

b (i)=l + (2sa
i − 1) m.

(3.4)

In this case, l represents explicitly the diffusion constant of an isolated
particle, with drift m, the sign of which is determined by sb

i . A convenient
representation of the system is to draw a one-dimensional profile from the
sequence {sb} (positive or negative slope depending on whether sb equals 0
or 1), to sketch the probabilistic inclination to turn left or right, as shown
in Figs. 7b and c.

The distribution of particles labeled (a), submitted to the diffusion
defined this way, is given by the sequence {sa} (0 or 1 particle depending on
the individual site values of sa). A complementary model is obtained by
exchanging the roles of sa and sb. In addition, elementary transitions of the
system correspond to jumps in the left or right direction of particles (a)
and (b). In the complementary formulation, these transitions are
materialized through modifications of the profile determined by sa or sb

(see Fig. 8). Therefore, from this viewpoint, we can formulate the dynamic
of subsystem (b) in terms of a KPZ model (13), in which the noise is
produced by the distribution of particles (a). With this formulation, the
conserved quantities (pointed out earlier) can be obtained in a straight-
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Fig. 7. Correspondence between 4-adic representation of the random walk (a) and one-
dimensional models of particle diffusion with exclusion. In (b), the sequence {sa} [resp. {sb}]
determines the profile of the diffusion [resp. the distribution of particles], drawn for c ±=l ±;
in figure (c) the role of the particles has been exchanged.

forward manner, since they simply express conservation of particles. If
boundary conditions are such that particles cannot escape from the system,
the population of both species is conserved. This is for example the case
when we impose periodic boundary conditions or also when extremities of
the chain are fixed.

Suppose we fix the total amount na and nb of particles (a) and (b), this
results then on the random walk by the fact that n0+n3=na and
n0+n1=nb are fixed (ni is the number of links i). Since n0+n1+n2+n3=N
it then easy to convince oneself that this is equivalent to fix n0 − n2 and

Fig. 8. (a) Elementary transition due to the jump of a type (a) particle, and the part (b) of
the figure shows the corresponding deformation of the profile defined by sa (c ±=l ±).
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n1 − n3, which is enough to determine the respective positions of the initial
and final points of the walk.

In addition, except when c=0, we get an easy way to determine the
irreducible classes of the system. In fact, for closed systems with a fixed
number of particles, once the population of each species is fixed, just start
from the configuration (11..1100..00) for both species where all particles
have been disposed to the left. Then, owing to possible consecutive jumps
to the right, which for c ] 0 are always authorized, one can reach any
arbitrary configuration. This shows that for closed systems irreducible
classes are indexed by the number of particles in each species, which corre-
sponds to the separation between extremities of the walk. On the other
hand, for open sample paths with free boundary conditions, irreducibility
holds as long as particles can both enter and leave the system.

3.2. An Iterative Scheme

An interesting point is the way stable configurations, which are
numerically observed, are represented by means of this exclusion process
formulation. In agreement with the intuition, Fig. 9 depicts a stable situa-
tion where particles are trapped in a well. As this remains true with the
complementary representation (see the lower part of Fig. 9b), the following
iterative scheme can be used to generate the global invariant measure: let
particles (a) evolve assuming the dynamics of particles (b) is frozen; then,
once this conditional stationary regime is reached, switch to particles (b)
conditioned by particles (a), etc. Translated mathematically, this machinery
is tantamount to the following iterative system

˛Xn+1=lim
t Q .

E(Sa(t) | Sb(t)=Yn, Sa(0)=Xn),

Yn+1=lim
t Q .

E(Sb(t) | Sa(t)=Xn, Sb(0)=Yn),

which captures the invariant measure of the process as n Q .. Numerically,
the sequences of random variables Xn and Yn convincingly converge for
g < 50 to the stationary variables Sa(.) and Sb(.).

Up to an abuse of notation, we shall often identify the random process
with any of its sample paths. For instance, we simply write P(Sa | Sb) [resp.
P(Sb | Sa)] for the conditional invariant measure of particles (a) [resp. (b)]
when the dynamics of particles (b) is frozen. Then the iterative scheme can
be reformulated as
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Fig. 9. (a) Stable configuration for closed chains. (b) Corresponding representation in terms
of exclusion models. (c) Glassy state with N=5000. (d) Corresponding KPZ landscape with
the density of trapped particles appearing in black.

Qn+1(Sa)= C
{Sb}

P(Sa | Sb) Rn(Sb),

Rn+1(Sb)= C
{Sa}

P(Sb | Sa) Qn(Sa),

where Qn [resp. Rn] represents the probability measure of Sa [resp. Sb]
after n steps of the algorithm. The invariant joint probability distribution is
given by

P(Sa, Sb)=P(Sa | Sb) R(Sb)=P(Sb | Sa) Q(Sa),

where Q(Sa)=limn Q . Qn(Sa) and R(Sb)=limn Q . Rn(Sb).
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4. FLUID LIMITS

4.1. Conditional Equilibrium

4.1.1. The Case of a Stretched Walk

Let us have a look to a special case which can be solved exactly. It will
provide some hints about scaling of the parameters when N Q ..

Consider a random walk with fixed extremities, and consisting only of
links oriented either to the north or to the east, i.e., (ai ¥ {0, 1}, i=1...N).
Here folds do not exist (see Fig. 10), so that sb=0 everywhere and solely
transitions l ± take place. It turns out that the invariant measure has the
product-form

P(a1,..., aN)=pa1
pa2

...paN
.

Indeed, introducing the occupation rate of particles (a) qi=p1(i)=
1 − p0(i), we have the balance equations

l+(1 − qi) qi+1=l−qi(1 − qi+1). (4.1)

Setting

ri=
def qi

1 − qi
,

we obtain a geometric series

ri=r0
1l−

l+
2 i

=r0 exp 5i log
1 − g/N
1+g/N

6 . (4.2)

In (4.2), the ratio

g

N
=

l+− l−

l++l−=
m

l
,

Fig. 10. Stretched random walk and asymmetric exclusion process.
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already introduced in (2.1) and (3.3), gives the typical scale nc 4 N
g , above

which we obtain straight aligned patterns. Here r0 is a normalizing con-
stant, which permits to fix the expected value n̄ of the particle density

n=
1
N

C
N

i=1
1{ai=1},

that is

n̄=E(n)=
1
N

C
N

i=1
qi=

1
N

C
N

i=1

ri

1+ri
.

Letting N Q ., we analyze the limiting process under the scaling,

g=def lim
N Q .

Nm

l
, (4.3)

where g, up to some abuse in the notation, is now a parameter independent
of N. This is tantamount to assume that m is implicitly a function of N.

Fixing x=i/N and taking the expansion with respect to g/N in (4.2),
we get the limit equation

r(x)=r0 exp(−2gx), (4.4)

which implies in turn

n̄=F
1

0
dx 11 −

1
1+r0 exp(−2gx)

2=
1
2g

log
1+r0

1+r0 exp(−2g)
.

Consequently,

r0=
sinh(gn̄)

sinh g(1 − n̄)
eg.

The integral of the particle density, taken as a function of x, is shown in
Fig. 10 and is given by

h(x)=F
x

0
du 11 −

1
1+r0 exp(−2gu)

2=
1
g

log 5 1+r0

1+r0 exp(−2gx)
6 .

This asymmetric exclusion model can be solved under more general condi-
tions, in particular with open boundaries, using matrix methods. (7) The
above simple example confirms the observed fact that the correct scaling
parameter is indeed g, and also somehow explains why the chain remains
Brownian when g M 1.
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4.1.2. The General Case at Steady State

Once the sequence {sb} is given, particles (a) form a simple exclusion
process in an inhomogeneous environment, with transition rates at position
i given by system (3.2).

Our basic claim rely on the reasoning carried out in Section 4.1.1 for a
closed system, in which the number of particles is kept constant.

Letting P(Sa, Sb) denote the invariant measure of the process
(Sa(t), Sb(t)), we start from the elementary decomposition

P(Sa, Sb)=P(Sa | Sb) P(Sb)=P(Sb | Sa) P(Sa).

From the discussion in Section 3.2, we claim that the conditional probabil-
ities P(Sa | Sb) and P(Sb | Sa) coincide with the equilibrium probabilities
obtained in Eq. (4.1) for each particle species. This means exactly that, as
long as there is no current, conditional detailed balance equations of type
(4.1) still hold at steady state, just replacing l ± by l ±

a (i) and l ±
b (i).

Hence, letting

qa
i =E[sa

i | Sb], qb
i =E[sb

i | Sa]. (4.5)

we can write, with regard to species (a),

l+
a (i)(1 − qa

i ) qa
i+1=l−

a (i) qa
i (1 − qa

i+1), i=1...N,

where sites N+1 and 1 are identified for periodic boundary conditions,
and qa

i [resp. qb
i ] is the random variable equal to the conditional probabil-

ity of having one particle of type (a) [resp. (b)] in position i given the
sequence {sb} [resp. {sa}].

P(Sa | Sb)=D
N

i=1
(sa

i qa
i +s̄ a

i (1 − qa
i )), (4.6)

where the qa
i ’s depend implicitly of Sb.

A detailed proof of these assertions could be be readily obtained by a
coupling argument. We simply quote that they are in fact a direct conse-
quence of the form (3.1) of the generator G, together with the uniqueness
of the forward Kolmogorov’s equations applied to functionals of the
Markov process (Sa(t), Sb(t)), which is irreducible and has a finite state
space.

Introducing now the ratio

ra
i =def qa

i

1 − qa
i

,
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we obtain

log[ra
i+1] − log[ra

i ]=log 1l−
a (i)

l+
a (i)

2 . (4.7)

By using (3.2), an easy algebra based on the boolean character of the sb
i

yields

log
l−

a (i)
l+

a (i)
=(1 − 2sb

i ) log
l − m

l+m
+(sb

i+1 − sb
i ) log

(c − d)(l+m)
(c+d)(l − m)

, (4.8)

with a similar equation for type b particles. In addition we observe that the
constraints

ra
N+1=ra

1 , rb
N+1=rb

1,

for periodic boundary conditions, will be automatically fulfilled as long as
the system of particles (b) is globally neutral (i.e., particles and holes have
the same cardinality), in which case

C
N

i=1
(1 − 2sb

i )=0.

4.1.3. Explicit Form of the Invariant Measure when d=0

When particule currents as well as any other type of unbalanced cycles
(e.g., rotations of folded motifs with d ] 0) are absent, one can expect the
invariant measure to be written in a Gibbs form. From the preceding
section, it is a simple matter to guess such an expression. Indeed, using
(4.8), it is not difficult to check that the probability measure

P(Sa, Sb)=
1
Z

exp 5b C
i < j

(sa
i s̄ b

j − sb
i s̄ a

j )6 , (4.9)

with b=log l − m
l+m , does satisfy the following detailed balance equations for

(a) [resp. (b)] species,

P({...(sa
k=1), (sa

k+1=0),...}, Sb)
P({...(sa

k=0), (sa
k+1=1),...}, Sb)

=
l−

a (k)
l+

a (k)
=exp 5(1 − sb

k − sb
k+1) log

l − m

l+m
6 ,

simultaneously, and also at the edges (i.e., k=N) owing to the neutrality
conditions

C
N

i=1
sa, b

i − s̄ a, b
i =0,
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corresponding to Na=Nb=N/2 (Z is the normalizing constant). In the
particule formulation, the symmetry arising from circular permutations
between links (0, 1, 2, 3) writes

˛ sa
Q sb,

sb
Q s̄ a.

Up to some algebra, the above form (4.9) can be checked to statisfy this
symmetry property, and is also the unique solution of PG=0, where G is
the generator defined in (3.1).

4.2. Closed Curves: Weak Convergence and Mean-Field-Like Limit

for Large N

We will now combine the stationary product forms obtained for each
particle species, according to the iterative scheme proposed at the end of
Section 3.2. Throughout this section, the dependence on N of the random
variables qa

k, qb
k, given by (4.5), is kept implicit for the sake of shortness in

the notation.
In order to derive ergodic and central limit theorems, it will be useful

to introduce {wa
i , i \ 0} and {wb

i , i \ 0}, two families of independent and
identically distributed Bernoulli random variables with parameter 1/2 and
taking values in the set {1, −1}. We assume that (Sa, Sb), {wa

i , i \ 0},
{wb

i , i \ 0} are defined on the same probability space, without further
comment.

Lemma 4.1. Let ak, k \ 1, denote a sequence of complex numbers
satisfying the condition supk |ak | < ..

There exists a probability space such that

˛
1
N

C
N

k=1
aksa

k=
1
N

C
N

k=1
ak(qa

k+sa
kwa

k)+O(N−2) a.s.,

1
N

C
N

k=1
aksb

k=
1
N

C
N

k=1
ak(qb

k+sb
kwb

k)+O(N−2) a.s.,

(4.10)

where

sa
k=`qa

k(1 − qa
k), sb

k=`qb
k(1 − qb

k), -k \ 1. (4.11)
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Proof. To analyze more precisely the coupling between the two
families, remembering Eqs. (4.5) and (4.6), we introduce the Laplace trans-
forms

ja
k(a)=def E 5exp 3 1

N
C
N

k=1
aksa

k
46=E 5D

N

k=1
[1+qa

k(e
ak
N − 1)]6 .

Then

ja
k(a)=E 5exp 3 1

N
C
N

k=1
akqa

k+
1

2N2 C
N

k=1
a2

kqa
k(1 − qa

k)+O 1 1
N2

246 .

On the other hand, starting from the equality

E 5exp 3 1
N

C
n

k=1
ak(qa

i +sa
i wa

i )46

=E 5exp 3 1
N

C
N

k=1
akqa

k+ C
N

k=1
log cosh

sa
kak

N
46 ,

with regard to the (a) species, we observe that the value of sa
k given in

(4.11) yields the matching

E 5exp 3 1
N

C
N

k=1
aksa

k
46=5E exp 3 1

N
C
N

k=1
ak(qa

k+sa
kwa

k)+O 1 1
N2

246 .

(4.12)

Since all random variables at stake are uniformly bounded, Eq. (4.12)
yields at once (4.10), but only in distribution. To conclude the proof of the
lemma, we make use of transfer and coupling theorems due to Skorohod
and Dudley (see ref. 12, Thm. 4.30 and Cor. 6.11, 6.12), which allow to
switch from equalities in distribution to almost sure properties, since on the
original probability space the right member of system (4.10) is a measur-
able mapping of the left one. L

4.2.1. Fundamental Scaling, Thermodynamic Limit, and Fluctuations
For any i, 1 [ i [ N, we put ad libitum x=i/N, 0 [ x [ 1.

Proposition 4.2. Under the fundamental scaling

˛
m

l
=

g

N
+o 1 1

N
2 ,

d

c
=O 1 1

N
2 ,
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the weak limits

ra(x)= lim
N Q .

qa
xN and rb(x)= lim

N Q .

qb
xN (4.13)

exist and satisfy the autonomous system of deterministic nonlinear differ-
ential equations

˛
“ra(x)

“x
=4gra(x)(1 − ra(x)) 1rb(x) −

1
2
2 ,

“rb(x)
“x

=−4grb(x)(1 − rb(x)) 1ra(x) −
1
2
2 .

(4.14)

In addition, the assumed closure of the original random walk imposes the
relations

˛F
1

0
ra(x) dx=F

1

0
rb(x) dx=1

2 ,

ra(x+1)=ra(x),

rb(x+1)=rb(x).

(4.15)

Proof. Taking the expansion with respect to N in Eqs. (4.7) and
(4.8), and using Lemma 4.1, we get after some algebra

˛ log
ra

k

ra
1

=
2g

N
C

k − 1

j=1
(2qb

j +2sb
j wb

j − 1)+O 1 1
N
2 a.s.,

log
rb

k

rb
1

=−
2g

N
C

k − 1

j=1
(2qa

j +2sa
j wa

j − 1)+O 1 1
N
2 a.s.

(4.16)

Since N is a parameter and x rather stands for a variable, it is conve-
nient to introduce the following functions of x

qa
N(x)=def qa

[xN], ra
N(x)=def qa

N(x)
1 − qa

N(x)
, sa

N(x)=def
`qa

N(x)(1 − qa
N(x)),

and similarly for the (b) species.
To omit some tedious technicalities, we will only sketch the remaining

lines of the proof.
First, it is not difficult to see that by restricting the expansion in (4.12)

up to terms of order N−1, and using the definition of ra
k, rb

k, we come to the
simplified system
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˛qa
k=

ra
1 exp 52g

N
C

k − 1

j=1
(2qb

j − 1)6

1+ra
1 exp 52g

N
C

k − 1

j=1
(2qb

j − 1)6
+O 1 1

N
2 a.s.,

qb
k=

rb
1 exp 5−

2g

N
C

k − 1

j=1
(2qa

j − 1)6

1+rb
1 exp 5−

2g

N
C

k − 1

j=1
(2qa

j − 1)6
+O 1 1

N
2 a.s.

(4.17)

In a second step, it can be shown from (4.17), as in a purely determi-
nistic context, that the quantities qa

N(x), qb
N(x), form Cauchy sequences,

hence converging, for all 0 [ x [ 1. To see that the deterministic limits
(4.13) exist and satisfy (4.14) is straightforward by approximating discrete
sums by Riemann’s integrals. This yields the differential system

˛
“

“x
5log

ra(x)
1 − ra(x)

6=2g(2rb(x) − 1),

“

“x
5log

rb(x)
1 − rb(x)

6=−2g(2ra(x) − 1),

which has similarities with the famous Lotka–Volterra equations, where x
plays here the role of the time. It is worth noting that (4.4) is immediately
revisited, taking merely rb(x) — 0 (i.e., the density of particles (b) is kept
constant). L

It is also tempting to get some insight into fluctuations around the
above deterministic limit. This will be achieved by establishing the forth-
coming central limit theorem.

Proposition 4.3. Under the fundamental scaling, the weak limits

ga(x)= lim
N Q .

`N
qa

N(x) − ra(x)
s2

a(x)
, gb(x)= lim

N Q .

`N
qb

N(x) − rb(x)
s2

b(x)
,

(4.18)

exist and satisfy the system of stochastic differential equations

˛dga(x)=4g[s2
a(x) gb(x) dx+sb(x) dWb(x)],

dgb(x)=−4g[s2
b(x) ga(x) dx+sa(x) dWa(x)],

(4.19)
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where

sa(x)=def
`ra(x)(1 − ra(x)), sb(x)=def

`rb(x)(1 − rb(x)).

Proof. Letting

Xa
N(x)=def 1

`N
C

[xN]

k=1
wa

k, Xb
N(x)=def 1

`N
C

[xN]

k=1
wb

k,

we consider the two white noise processes

Wa(x)=def lim
N Q .

Xa
N(x), Wb(x)=def lim

N Q .

Xb
N(x).

We call on a strong approximation theorem, which is a refinement of the
invariance principle (see ref. 14: it shows how to construct Wa(x) and
Wb(x) on the same probability space as Xa

N and Xb
N) in such a way that

sup
0 [ x [ 1

|XN(x) − W(x)|=O 1 log N

`N
2 .

Arguing as in the derivation of Proposition 4.2, we can write

˛ log
ra

N(x)
ra

N(0)
=2g F

x

0
du(2qb

N(x) − 1)+
4g

`N
F

x

0
sb

N(u) dWb(u)+O 1 log N
N

2 ,

log
rb

N(x)
rb

N(0)
=−2g F

x

0
du(2qa

N(x) − 1) −
4g

`N
F

x

0
sa

N(u) dWa(u)+O 1 log N
N

2 ,

(4.20)

where the stochastic integrals are taken in the Itô sense (see ref. 15). Defin-
ing ga

N(x) and gb
N(x) by the equations

qa
N(x)=ra(x)+s2

a(x) ga
N(x),

qb
N(x)=rb(x)+s2

b(x) gb
N(x),

then putting these expressions into (4.20) and differentiating (4.20) (details are
omitted), we are lead to 4.20. The proof of Proposition 4.3 is completed. L

Remark. Let us comment on the scaling of d. Contrary to the
scaling of m, which is naturally dictated by homogeneity (the sums in (4.16)
remain meaningful after dividing by N, when N Q .), it is a purely
dynamical consideration which dictates the scaling of d. Indeed, m and d
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are associated with time constants ym and yd. The quantity ym represents the
typical unit of time for a free particle (a) or (b) to drift along the system
over a finite distance, whereas yd is a time-scale for rotations of vertical or
horizontal fold M2 of the chain, remembering that d stands for the detun-
ing between c+ and c− defined in Section 1. Therefore either these time-
scale are coherent and d is rescaled, otherwise rotational motions of M2
occur at a shorter time scale and a different analysis has to be conducted,
since motifs M2 (which correlate hole-particle pairs of species (a) and (b))
reach their equilibrium distribution before particles have enough time to
move along the system. Numerically we could not perceive any specific
effect related to d, so that we restricted ourselves to the above fundamental
scaling.

4.2.2. Second Order Phase Transition

Here we focus on on the deterministic (4.14) part of the equations.
Using the notation

na(x)=def 2ra(x) − 1, nb(x)=def 2rb(x) − 1,

apart from the trivial solution na(x)=nb(x)=0, we obtain from (4.14)

na(x)
1 − n2

a(x)
“na(x)

“x
=−

nb(x)
1 − n2

b(x)
“nb(x)

“x
,

or, after integration,

1 − n2
a(x)=

C
1 − n2

b(x)
, 0 < C < 1,

since |na | < 1 and |nb | < 1. Plugging the last relation into (4.14) leads to

1“na(x)
“x

22

=g2[1 − n2
a(x)][1 − C − n2

a(x)], (4.21)

the solution of which is the standard Jacobi elliptic function

na(x)=
1

`1 − C
sn(gx, `1 − C).

Finding the constant C is equivalent to compute the fundamental period of
these functions. Hence, denoting by X(C) the period of na(x), we have to
solve

X(C)=1. (4.22)

252 Fayolle and Furtlehner



From (4.21) we see that na(x) is bounded by −`1 − C and `1 − C. Taking
into account the constraint (>1

0 na(x) dx=0), X(C) is exactly given by

X(C)=
1
g

F 1p

2
, `1 − C2=

4
g

F
1

0

dn

`[1 − n2][1 − (1 − C) n2]
,

where F is the standard elliptic integral of first kind.
X(C) is a decreasing function of C on ] 0, 1], reaching its minimum

for C=1, so that

X(C) \ X(1)=
2p

g
.

Thus appears is a critical value for g, namely

gc=2p.

When gc < 2p, (4.22) cannot be fulfilled and we are left with the trivial
solution.

When gc \ 2p, it is straightforward to compute the arithmetic area
S1(g) of the first winding sector, since it is indeed the only non-vanishing
sector. Setting

˛hx(u)=1
2 F

u

0
dv[na(v)+nb(v)] dv,

hy(u)=1
2 F

u

0
dv[na(v) − nb(v)] dv,

S1(g) is simply the area enclosed by the curve (hx(u), hy(u)) u ¥ [0, 1],
which is given by

S1(g)=
1
2

F
1

0
du 5hx

“hy

“u
− hy

“hx

“u
6 ,

or, after some algebra,

S1(g)=
1

2g2 F
`1 − C

0

n

`(1 − n2)(1 − C − n2)
log 51+n

1 − n
6 dn,

keeping in mind that C is also a function of g. The corresponding curve
displayed in Fig. 5b matches pretty nicely all numerical observations, in
particular with regard to the critical value gc.
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4.2.3. More about Fluctuations for g < gc

When g is under the threshold gc, the deterministic part becomes
trivial, and we are left with fluctuations. This corresponds basically to the
observations shown in Figs. 2a and 2b. Inserting

ra(x)=rb(x)=1
2 ,

in (4.19), and setting

g(x)=ga(x)+igb(x), W(x)=Wa(x)+iWb(x), (4.23)

we get solutions of the form

g(x)=−2ig F
x

0
e ig(u − x) dW(u),

which corresponds to

qa(x)=
1
2
+

g

`N
5F

x

0
(sin(g(u − x)) dWa(u)

+cos(g(u − x)) dWb(u))+dWa(x)6+o 1 1

`N
2 ,

qb(x)=
1
2
+

g

`N
5F

x

0
(cos(g(u − x)) dWa(u)

− sin(g(u − x)) dWb(u))+dWb(x)6+o 1 1

`N
2 .

Hence we have derived an equivalent process, which up to order o( 1
`N

),
describes the curves numerically observed. Letting

˛ha
N(x)=def 1

N
C

[xN]

j=1
(2sa

j − 1),

hb
N(x)=def 1

N
C

[xN]

j=1
(2sb

j − 1),

the so-called equivalence says precisely

dha
N(x)=ha

N
1x+

1
N
2− ha

N(x)

=2qa
N(x)+

2

`N
sa

N(x) dWa(x) − 1+o 1 1

`N
2
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and the same holds for dhb
N(x). Introducing the complex function

hN(x)=ha
N(x)+ihb

N(x),

we have

dhN(x)=−
2ig

`N
5F

x

0
e ig(u − x)dW(u)+dW(x)6+o 1 1

`N
2 ,

which, after integrating by parts, yields

hN(x)=
1

`N
5F

x

0
2e ig(u − x)dW(u) − W(x)6+o 1 1

`N
2 .

At this point it is possible to reconstruct the curves observed numerically,
remembering that the discrete displacements (dxi, dyi) in the plane are
expressed in terms of sa

i and sb
i as

˛dxi=1 − sa
i − sb

i ,
dyi=sa

i − sb
i .

According to (4.23), we define

h(x)= lim
N Q .

1

`N
C

[xN]

k=0
(dxk+idyk) and Z(x)=

i − 1
2

W(x).

Then we have

h(x)=F
x

0
2 exp[ig(u − x)] dZ(u) − Z(x).

This above equation accounts for the windings of the Brownian curve
observed in Fig. 2b. When g Q 0, h(x) coincides with the standard Brow-
nian motion Z.

4.3. Burgers Equations in the Fluid Limit

In this section, without pretending to a detailed presentation, we
propose a formal derivation of hydrodynamic equations describing the
fluid limit of the particle density. They comprise the steady state solutions
obtained in 4.2.
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We start from the fact (which might be considered by the reader as an
heuristic assumption) that the conditional independence of the sa

i [resp.
sb

i ], which is realized at time t=0 and at steady state, remains valid for all
fixed time t, up to order O(N−1). Exact proofs of this claim could be
provided by adapting (up to sharp technicalities) some classical lines of
argument proposed, e.g., in refs. 17, 9, and 22, together with a mean field
type approach for the convergence of the semi-groups of the underlying
Markov processes indexed by N.

Considering the stochastic variable which expresses the current of
particles (a) between sites i and i+1 at time t, namely

ja
i (t)=l+

a (i, t) sa
i (t) s̄ a

i+1(t) − l−
a (i, t) sa

i+1(t) s̄ a
i (t),

jb
i (t)=l+

b (i, t) sb
i (t) s̄ b

i+1(t) − l−
b (i, t) sb

i+1(t) s̄ b
i (t),

we define the conditional expectation

Ja
i (t)=E[ja

i (t) | Sb], Jb
i (t)=E[jb

i (t) | Sa].

On account of the particle conservation principle, we have locally

“

“t
E[sa

i (t)]+E[ja
i (t) − ja

i − 1(t)]=0. (4.24)

Then introducing the time dependent expectations qa
k(t) as functions of the

sample path Sb

qa
k(t)=E[sa

k(t) | Sb], qb
k(t)=E[sb

k(t) | Sa], (4.25)

we can write by (4.24)

1
N

C
N

k=1
ak(qa

k(t) − qa
k(0)+F

t

0
dy(Ja

k(t) − Ja
k − 1(t)))=0, (4.26)

with again the condition supk |ak | < .. Expressing the almost conditional
independence of the sa

k’s, we have

1
N

C
N

k=1
akEt[l+

a (k, t) qa
k(t)(1 − qa

k+1(t)) − l−
a (k, t) qa

k+1(t)(1 − qa
k(t))]

=
1
N

C
N

k=1
akJa

k(t)+o 1 1
N
2 .
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To be consistent with the procedure developed for the stationary regime
case, we substitute to the Sb the so-called equivalent set {qb

k+sb
kwb

k} into
the expressions of the rates given by

log l ±
a (i)=log l+2(sb

i +sb
i+1 − 2sb

i sb
i+1) log

c

l

±
g

N
(1 − sb

i − sb
i+1) ±

d

c
(sb

i − sb
i+1)+o 1 1

N
2 ,

according to the fundamental scaling. This insures that l+
a and l−

a remain
perfectly correlated. As for the the fluid limit, the procedure amounts
simply to replace sb

i by qb
i in l ±

a (i), and to approximate all discrete sums in
(4.26) by Riemann’s integrals, for arbitrary a(x). This yields the continuity
equation

“ra(x, t)
“t

=−
“Ja(x, t)

“x
, (4.27)

where ra(x, t) and Ja(x, t) are the deterministic continuous counterparts of
qa

k(t) and Ja
k(t). The current is now given by

Ja(x, t)=D 52gra(1 − ra)(1 − 2rb) −
“ra(x, t)

“x
6 exp 12rb(1 − rb) log

c

l
2 ,

(4.28)

where we have introduced the diffusion constant

D=def lim
N Q .

l

N2 ,

l being implicitly taken as a function of N. This scaling is confirmed
numerically (see Fig. 5c). Actually we observe that the parameter c controls
the dynamics of the system through the definition of an effective diffusion
constant. For particles (a), we have

Da(x, t)=def D exp 52rb(x, t)(1 − rb(x, t)) log
c

l
6 .

with the corresponding relation for particles (b)). In the particular case
c Q 0, this constant vanishes, except at loci where the density of particles
(b) has no fluctuations, that is s2=rb(1 − rb)=0), in which case
Da(x, t)=D, as to be expected from the analysis of the stretched walk.
When c=l, we obtain a dynamical system of deterministic equations
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“ra(x, t)
“t

=D
“

2ra(x, t)
“x2 − 2Dg

“

“x
[ra(1 − ra)(1 − 2rb)](x, t),

“rb(x, t)
“t

=D
“

2rb(x, t)
“x2 +2Dg

“

“x
[rb(1 − rb)(1 − 2ra)](x, t).

These equations belong to Burgers class. When taking one of the two
density species (say (a)) to be a constant ra=0 or ra=1, the density of
particles (b) is then driven by an ordinary Burgers equation describing the
evolution of a stretched walk. For an arbitrary c, the steady state solution
of (4.27) is tantamount to let the current vanish in (4.28), which after inte-
gration gives system (4.14) independent of c, as to be expected.

5. CONCLUSION AND PROSPECTS

The model of the discrete event system presented in this report turned
out very friendly for simulation runs. Although the dimension be small
(curves in the Euclidean plane), several basic phase-transition phenomena
have been observed, among which a glassy phase. As we stove to point out,
there are many ways to describe this system, which bring to light connec-
tions between various stochastic and algebraic formalisms.

Nonetheless, in our opinion, the most efficient way toward concrete
mathematical and physical properties appears to be on the track of coupled
exclusion processes. This mapping allows also to address the continuous
limit considered in the last section, and this approach can be a method for
coding numerical simulations. In this manner, we have been able to observe
that when we alternatively freeze one of the subsystems, letting the other
one reach its equilibrium, the whole process attains its stationary state, and
moreover much quicker.

It is worth remarking the connection of our model with the so-called
(ABC) model of ref. 10, which considers three particle species on a ring. In
fact, if we map the sequences (X1,..., XN), Xi ¥ {A, B, C}, onto random
walks on the triangular lattice. Then the letters A, B, C correspond to
oriented links in the directions 0, 2p

3 , 4p
3 , and the dynamics is obtained by

exchanging left and right bends with rates 1 and q. Closed curves are
obtained with a fair distribution of letters A, B, C. In this case, the authors
can write an explicit form for the invariant measure, currents are absent,
and the same kind of phase transition phenomenon appears. It is also
worth mentionning, that a very similar although different model to ours,
consisting of two coupled exclusion models has been introduced in the
context colloidal sedimentation. (16)
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In our model as far as dynamics is concerned, deeper investigations are
needed in order to include fluctuations directly into the equations, and to
clarify the role of the parameter d. This would give a firm starting point to
get an insight into slow dynamics and into the non-linear excitations which
are swarming in the glassy phase (metastable states). Open boundary con-
ditions and presence of currents would also be worth investigating.
Actually, it seems possible to generalize the model to higher dimensions
and to find related concrete applications, for example in biology (evolution
of RNA and proteins). In particular in R3, we plan to adapt our model
having in mind the existence of dynamical twistings.
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